Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Fertil Steril ; 114(2): 223-232, 2020 08.
Article in English | MEDLINE | ID: covidwho-1385570

ABSTRACT

OBJECTIVE: To determine the susceptibility of the endometrium to infection by-and thereby potential damage from-SARS-CoV-2. DESIGN: Analysis of SARS-Cov-2 infection-related gene expression from endometrial transcriptomic data sets. SETTING: Infertility research department affiliated with a public hospital. PATIENT(S): Gene expression data from five studies in 112 patients with normal endometrium collected throughout the menstrual cycle. INTERVENTION(S): None. MAIN OUTCOME MEASURE(S): Gene expression and correlation between viral infectivity genes and age throughout the menstrual cycle. RESULT(S): Gene expression was high for TMPRSS4, CTSL, CTSB, FURIN, MX1, and BSG; medium for TMPRSS2; and low for ACE2. ACE2, TMPRSS4, CTSB, CTSL, and MX1 expression increased toward the window of implantation. TMPRSS4 expression was positively correlated with ACE2, CTSB, CTSL, MX1, and FURIN during several cycle phases; TMPRSS2 was not statistically significantly altered across the cycle. ACE2, TMPRSS4, CTSB, CTSL, BSG, and MX1 expression increased with age, especially in early phases of the cycle. CONCLUSION(S): Endometrial tissue is likely safe from SARS-CoV-2 cell entry based on ACE2 and TMPRSS2 expression, but susceptibility increases with age. Further, TMPRSS4, along with BSG-mediated viral entry into cells, could imply a susceptible environment for SARS-CoV-2 entry via different mechanisms. Additional studies are warranted to determine the true risk of endometrial infection by SARS-CoV-2 and implications for fertility treatments.


Subject(s)
Betacoronavirus/metabolism , Coronavirus Infections/metabolism , Endometrium/metabolism , Endometrium/virology , Gene Expression Regulation, Viral , Pneumonia, Viral/metabolism , Adult , Age Factors , Angiotensin-Converting Enzyme 2 , Betacoronavirus/genetics , COVID-19 , Coronavirus Infections/genetics , Female , Humans , Menstrual Cycle , Middle Aged , Pandemics , Peptidyl-Dipeptidase A/biosynthesis , Peptidyl-Dipeptidase A/genetics , Pneumonia, Viral/genetics , Risk Assessment/methods , SARS-CoV-2 , Virus Internalization , Young Adult
3.
Am J Reprod Immunol ; 85(4): e13313, 2021 04.
Article in English | MEDLINE | ID: covidwho-669908

ABSTRACT

Molecular diagnostics is a rapidly growing branch of the clinical laboratory and has accelerated the advance of personalized medicine in the fields of pharmacogenomics, pharmacogenetics, and nutrigenomics. The versatility of molecular biology allows it to be effective in several medical fields that include reproduction, immunogenetics, and virology. Implementation of molecular and sequencing technology in reproductive medicine can add another layer of understanding to better define the causes behind infertility and recurrent reproductive loss. In the following, we examine current molecular methods for probing factors behind reproductive pregnancy loss including reverse transcription polymerase chain reaction and next generation sequencing (NGS). We review several current and potential genetic (DNA) and transcriptional (RNA)-based parameters in women with infertility that can be significant in diagnosis and treatment. These molecular factors can be inferred either from genomic DNA or RNA locally within the endometrium. Furthermore, we consider infection-based abnormalities such as human herpesvirus-6 and severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Finally, we present future directions as well as data demonstrating the potential role of human endogenous retroviruses in pregnancy loss. We hope these discussions will assist the clinician in delineating some of the intricate molecular factors that can contribute to infertility and recurrent reproductive failures.


Subject(s)
Abortion, Spontaneous , COVID-19 , Gene Expression Regulation , Herpesvirus 6, Human , Infertility, Female , Roseolovirus Infections , SARS-CoV-2 , Abortion, Spontaneous/genetics , Abortion, Spontaneous/metabolism , Abortion, Spontaneous/virology , COVID-19/genetics , COVID-19/metabolism , Endometrium/metabolism , Endometrium/virology , Female , Herpesvirus 6, Human/genetics , Herpesvirus 6, Human/metabolism , Humans , Infertility, Female/genetics , Infertility, Female/metabolism , Roseolovirus Infections/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL